The lattice-ordered group of automorphisms of anα-set

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The group of automorphisms of the set of bent functions

The bent functions are the Boolean functions of an even number of variables which are at the maximum possible distance from the set of all affine functions. In this paper, it is shown that each isometric mapping of the set of Boolean functions of n variables to itself preserving the class of bent functions is a combination of an affine transformation of coordinates and a shift by an affine func...

متن کامل

On the Congruence Lattice of an Abelian Lattice Ordered Group

In the present note we characterize finite lattices which are isomorphic to the congruence lattice of an abelian lattice ordered group.

متن کامل

On Marginal Automorphisms of a Group Fixing the Certain Subgroup

Let W be a variety of groups defined by a set W of laws and G be a finite p-group in W. The automorphism α of a group G is said to bea marginal automorphism (with respect to W), if for all x ∈ G, x−1α(x) ∈ W∗(G), where W∗(G) is the marginal subgroup of G. Let M,N be two normalsubgroups of G. By AutM(G), we mean the subgroup of Aut(G) consistingof all automorphisms which centralize G/M. AutN(G) ...

متن کامل

The Lattice of Completions of an Ordered Set

For any ordered set P, the join dense completions of P form a complete lattice K(P) with least element O(P), the lattice of order ideals of P, and greatest element M(P), the Dedekind-MacNeille completion of P. The lattice K(P) is isomorphic to an ideal of the lattice of all closure operators on the lattice O(P). Thus it inherits some local structural properties which hold in the lattice of clos...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Pacific Journal of Mathematics

سال: 1973

ISSN: 0030-8730,0030-8730

DOI: 10.2140/pjm.1973.49.417